Greedy Algorithm	Dr.C we show side of subprob
Exchange Argument:	Marty Thank Time complexity & Divide & Conquering .
1. Refine Greedy Solution as X to an optimal	$T(n) = \begin{pmatrix} aT(\frac{y}{2}) + f(n) & f_{1}, n \ge d \\ C & f_{2}, n < d \end{cases}$
solution, X opt.	
2. Compare Solution that $X \neq X_{opt}$	1) if $f(n) = O(n^{\log_2(n)-\epsilon})$ for $\epsilon > 0$, then $T(n) = \Theta(n^{\log_2(n)})$
3. Exchange Piece: How to transform Xapi into X by	2) il fini - $\Theta(n^{\log_2(n)} \log^k n)$ for $k \ge 0$, then $\overline{f(n)} \cdot \Theta(n^{\log_2(n)} \log^k n)$ is
exchanging some piece of X opt for some piece of X without increasing/decreasing Cost of	$2 + \Omega \rightarrow \Omega = \frac{1}{2} \log (\alpha) + \frac{1}{2} = \frac{1}{2} \log (\alpha) + \frac{1}{2$
Xapt.	1 Divide break into subproblems, that are themselves smaller
4. Herate Witil X = Xopt.	inclosures & some fine of the original and line Th
Solution: Consider the following greedy algorithm. We will use x to denote the amount	2. Delagues : 12cusing solving these variable.
Consider the moving group againsmin for which is a solution of value left. Initialize $x = n$; while $x > 0$, output the stamp with the largest value that is at most x and subtract its value from x.	3 Conguer appropriately combing (marging) problem.
We will prove correctness by an exchange argument. Less be the sequence of stamps output	
by the greedy algorithm and \underline{S}^* be an optimal set of stamps, sorted from largest value to smallest. If $S = S^*$, then S is optimal. Let v_i and v_j be the value of the $\underline{c}\underline{v}$ stamp in S and \underline{c}^* , meaning the interpret of the transformation of the $\underline{c}\underline{v}$ is the transformation of the constant of the constant on a transformation of the constant on a transforma	Use of Induction Proof.
and S_{i} , respectively. Consider the first index \tilde{G} such that the <u>i-th stamp</u> in S has a different value from the <u>i-th</u> stamp in S^* . Let $\overline{x_1}$ be the remaining value left after the first $\underline{i} - 1$ stamps. Since greedy chooses the stamp with the largest value that is at most \tilde{G} for its <i>i</i> -th stamp, it must be that $v_i > v_i^*$. Moreover, since each denomination can be divided evenly by every smaller denomination, there exists a subset \tilde{O} of S^* scale which we less than v_i , whose total value is exactly v_i . Such a subset must consist of at least two stamps. Thus, replacing T with a single stamp of value v_i . Tesults in a solution with fewer stamps than $\tilde{S'}$. But this contradicts the optimality of S^* . Thus, we conclude that $\underline{S} = \underline{S}^*$ and that greedy is optimal.	Solution: The algorithm starts at the root and does the following recursively. If the current vertex is an internal vertex with smaller weight than both of its children, return the current vertex as a local minima, otherwise, recurse on one of the children with smaller weight. If the current vertex is a leaf, then return the current vertex as a local minima. To see why this is $O(\log n)$ time, note that we take $O(1)$ time to decide whether to $\frac{1}{1}$, return the current vertex as a local minima or to recurse on one of the two children, and an whenever we recurse, we go down one level of the binary tree. Since a complete binary tree swith n vertices has at most $O(\log n)$ levels, the total time takem by this $O(\log n)$ to $O(\log n)$.
The running time of this algorithm is $O(n)$. There are at most n iterations as x decreases by at least 1 per iteration. In each iteration, it takes $O(1)$ time to determine the value of the largest stamp at most x and to increment s by 1. - Solution: Suppose you have a sorted list of the white dot positions and the black d	The proof of correctness is easiest to see without using induction (see below for an induction proof). Suppose, towards a contradiction, that the algorithm returns a vertex v that is not a local minima. By definition of the algorithm, v cannot be an internal vertex because the algorithm only returns an internal vertex u after checking if its weight is indeed smaller than all of its neighbors. Thus, v must be a leaf. But then the algorithm reached v only because –
positions. Then you should match the <i>i</i> th white dot with the <i>i</i> th black dot. To prove that the algorithm is optimal consider an optimal solution X_{opt} and the soluti X produced by the greedy algorithm. Again, $\text{if}(X = X_{opt}$ then we are done? Otherw there must exist a <u>omatched</u> pair w_i by $\text{wit}(i \neq j)$ in X_{opt} . We call such a g_{ij} an inversion. Since w_i is matched to b_j , b_i must be matched to some w_k with $k > i$. We argue that we can remove an inversion in the optimal solution X_{opt} and the cost of t matching will not increase. First consider the cost of matching these two pairs in the optims solution:	is Here's a proof of correctness via induction. Here's a proof of correctness via induction. Base case: $(n = 1)$ The algorithm correctly returns the single vertex as a local minima. — Induction case: $(n > 1)$. Suppose the algorithm is correct for complete binary trees with less than <i>n</i> vertices. If the root <i>r</i> is a local minima, then the algorithm correctly returns_ the root. Otherwise, suppose the algorithm recursed on <i>r</i> 's child <i>u</i> , and let <i>v</i> be the vertex returned by the recursive call. There are two cases: either $u = v$ is a child of the root <i>r</i> or $^{-14}$ not. In the latter case, the correctness follows from the induction hypothesis. For the former case, the induction hypothesis only tells us that <i>v</i> is smaller than both of <i>v</i> 's children. We
$C := C(w_i, b_j) + C(w_k, b_i) = w_i - b_j + w_k - b_i .$ If we replace these two pairs with (w_i, b_i) and (w_k, b_j) we would get:	still need to show that v is smaller than its parent r . But this follows from the fact that we _ recursed on v precisely because v is smaller than r .
$C' := C(w_i, b_i) + C(w_k, b_j) = w_i - b_i + w_k - b_j .$	Some Post - Processing Algorithm
- There are three cases depending on w_k 's relative position between b_i and b_j .	Marge Sont O(nlog(n1)
1. When it's smaller than both of them the cost stays the same: indeed, then $w_i < w_k$ – $b_i < b_j$, and so	CLOSET PALY OF FORM (LIVLOG LIVI)
$C - C' = b_j - w_i + b_i - w_k - (b_i - w_i + b_j - w_k) = 0$	Maximum shim Contransone Subarray O(n)
2. When its smaller than just b_j , we have $b_i \leq w_k < b_j$ (and since $w_i < w_k$, we also hat $w_i < b_j$), and	Recurrence Formula
$C - C' = b_j - w_i + w_k - b_i - (w_i - b_i + b_j - w_k) = 2w_k - (b_i + w_i + w_i - b_i)$	$T(n) = 2T(n/2) + O(n) \Rightarrow O(n \log(n)) \cos OP$
Since $b_i + w_i + w_i - b_i = 2 \max(w_i, b_i)$ (check it! $a + b + a - b = 2 \max(a, b)$) at $w_k \ge \max(w_i, b_i)$ (since $w_k > w_i$ and $w_k \ge b_i$), we get	$1(n) = 2T(n/2) + O(\log(n)) \Rightarrow O(n) \operatorname{ACG_{3}} \operatorname{ACG_{3}}$
$C - C' = 2w_k - 2\max(w_i, b_i) \ge 0.$	$7(n) = 27(1)/2/7(1) \Rightarrow O(n)$
3. When it's bigger than both of them, we have b _i < b _j ≤ w _k , and so $C - C' = w_i - b_i + w_k - b_i - (w_i - b_i + w_k - b_i) = w_i - b_i - w_i - b_i + b_i - b_i $	$T(n) = T(n) + O(n) \Rightarrow O(n)$
$C - C' = w_i - b_j + w_k - b_i - (w_i - b_i + w_k - b_j) = w_i - b_j - w_i - b_i + b_j - b_i $ Now, by the triangle inequality, $ b_i - b_j + b_j - w_i \ge b_i - w_i $, i.e., $ b_j - w_i = b_i $	10^{11} 10^{12} 10^{12} 10^{12} 10^{12} 10^{12} 10^{12}
$w_i + b_i-b_j \ge 0$ and since $b_j-b_i= b_i-b_j $ as $b_j>b_i$, this last inequality is say that	
$C-C' \geq 0$ in this case as well.	
Therefore we can remove the inversion in X_{opt} and guarantee that we still have an optim – solution. This argument can be iterated until we have no more inversions in the soluti	$\frac{12}{10}$ us a max(us as 1.1) if $\chi[5] = \chi[5]$
and, hence, the greedy solution must be optimal since it has no inversions.	$max(M[i,j-1], M[i-1,j])$ if $X[i] \neq Y[i]$

	OP Time Complexity: num. sub problems.	Flow Network
Divide & Conquering .	1 Define Subordshow : OPTEZ] is what	s-E flow : MAX FLOW < MIN CVT
	2. Define Recurrence: define cases. ie < selects job 12	Capacity Constraint : e & E : 0 sf(e) s ((e)
	3. Define Base Case: solve base causes	e is saturated if fin + clas
n T(n) = $\Theta(n^{han(n)})$	4. Grafuate 1-3. order	· Conservation Constraint : VEVI [5,6]
en Tins = O (n ^{logu(a)} log ¹⁰)	 Subproblems: So now we know that we need to keep track of both the number of campsites (i) and the number of days left (i) to define a recurrence. 	<u>Σe</u> (ω) τ (ω) = Σ f(ω)
15 Stal for E>0,3<1	Let $U(i)$ to be a resonance i resonance. We thus re-define our subproblem as follows: Let $M[i, l]$ be the optimal minimum maximum distance walked in a day to get to campsite i in ℓ days.	
	Satisfying Property 1: To ensure we only have a polynomial number of subproblems we must again ask ourselves which subproblems	
	are related to the original problem. For example, calculating the optimal solution for getting to newsatle in k + 1 days won't help us figure out how to get there in k days. So we can narrow down which subproblems we need to M_{i}^{i}, d for all $0 \le i \le n+1$, and $0 \le \ell \le k$. This gives us $O(nk)$ subproblems, which is polynomial.	$Copcity of cut (A,B) = \sum_{cont} c(A,B)$
that are themselves smaller	Satisfying Property 2: The subproblems satisfy the second property because the solution to our original problem is in itself a	Augmenting Parth Algorithm
al problem. Table.	subproblem, namely $M[n + 1, k]$. Satisfying Property 3:	-> s-t path in Ger called an augmenting path
uarging) problem.	When we visualise the solutions to our subproblems in a table (see Figure 2), we can see that the subproblems satisfy a natural ordering as well.	b= bottlenect (P,F) > min copity in residual graph
	Satisfying Property 4: Again, even though the first three properties of a good subproblem are satisfied, we won't know if this definition of our subproblems will work until we have tried to define a recurrence.	Le vertues reachable from s in the residual network for mox flow.
vof.		·Ford-Fulkerson O(nm²) (choose any any path ()
he following recursively. If the current oth of its children, return the current	We use the same approach as before.	•Ford-Fulkerson w shortest augmenting path will run in the order of O((n+n)(nm²))
f the children with smaller weight. If rtex as a local minima.	the optimal campsites to stay at before campsite j by finding the optimal solution to get to campsite j in	Orlin's Algorithm : O((m+n)(nm)) General Augmenting
urse on one or the two children, and	$\ell = 1$ days $(M_i, \ell = 1)$). From here, the minimum maximum distance walked on any day to reach campsite i in ℓ days will be the maximum between the minimum maximum distance walked to get to j $(M_i, \ell = 1)$) and the distance between j and i (see Figure []). Let us denote the distance from campsite i to campsite j	Edwords - Kap : OC m2 log (F)) / Porth O(mn)
ry tree. Since a complete binary tree ne taken by this algorithm is $O(\log n)$.	as $D(i, j)$. We can express this as follows:	Sidentical to Ford - Fulkerson, BUT defined any path.
induction (see below for an induction corithm returns a vertex v that is not	$M(i, \ell) = \max\{M(j, \ell - 1), D(j, i)\}$ (1) So far we assumed we knew what the optimal solution is. In reality, we still need to figure out what j	G (V,E) Residual Notwork (6f5)
not be an internal vertex because the ing if its weight is indeed smaller than		5 70 2 5 1 2
the algorithm reached v only because leaf, its parent is its only neighbor.	iki (U i i i i i i i i i i i i i i i i i	sozytet
	 Base case: Now that we have our recurrence the next step is to define our base case. Again, we recall that our base case has to satisfy 3 main properties: Trimar to gave without the need for smaller subproblems. 	5 2 3 2
e single vertex as a local minima. prrect for complete binary trees with	2. Can be solved in <i>constant time</i>	Including Transform Algo for Transform Solution for Island
then the algorithm correctly returns on r 's child u , and let v be the vertex	never require a smaller subproblem to build up your solution. Let's consider $i = 1$ and $\ell = 1$. The optimal solution to get to campsite 1 in 1 day is simply $D(0, 1)$ so	X to Y MARTIN Y to X
ither $u = v$ is a child of the root r or induction hypothesis. For the former maller than both of v 's children. We	− be reached. From our recurrence we can determine that we will need to compute M(j, ℓ − 1) for every j < i. – Imagine we are trying to compute M(i, 1) where i > 1. To compute this we must compute, for all 0 < j < i,	Application of MAX FLOW
But this follows from the fact that we	yalue of <i>i</i> in our recursive calls. But let's think for a moment about the solution to <i>M</i> (<i>i</i> , 1). Getting to campsite <i>i</i> in only 1 day seems	- Bipartite Matching: MSE is matching if
prithm	as trivial as getting to campsite 1 in 1 day. The optimal solution will still be the distance between campsite 0 and campsite i. Hence, we can conclude that our base case doesn't need a specific value for <i>i</i> . It is simply $M(i, 1) = D(0, i)$.	each node appears in at most one edge. i.e) find max M G=(LUR,E)
•	4. Order of Evaluation: We have defined an O(nk)-sized table to store the solution to our subproblems (to avoid repeating any computations). Next, in order to turn the above into an algorithm we need to decide on which order to evaluate the subproblems in.	(Use Edwards Karp) 50 + + + + +++++++++++++++++++++++++++
	Justiling the recurrence, base coses, how optimal	- Perfect Matching: MSE is perfect matching if each node appears in exactly one edges M.
y O(n)	Solution: Let $S[n]$ denote the minimum number of stamps needed to make postage for n	
	cents. We clearly then have $g(\alpha) = \alpha$ These cases above should be considered our <u>"base cases</u> " and we then work from these to	Let S be a subject of nodes, and let N(S) be
g(n)) LCS OP	compute values of $S[n]$ for higher values of n . The main idea, then is to consider what happens if we use a stamp of a particular value . For example, if we want postage of n cent,	the set of nodes adjacent to nodes in S.
)(n) M[4,5]= {mox{[m[2:1,3-1]+1]} if if [1] [mox{[m[2:1,3-1]+1]} if if [1] [mox{[m[2:1,3-1]+1]} if [1]	then we can clearly get it by taking one stamp of 1e, and $S[n-1]$ stamps (of appropriate values) to make up the remaining postage of $(n-1)c$. Or if we take a \overline{c} stamp, then we _ need $S[n-7]$ stamps (of the right values) to make up the rest, and similarly if we take a _	-Marriage Theorem ! iff [N(S)] > IS]
₩x[€] <i>¥</i> ΥΣ5]	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
(n))	Set up the array S startph as above (with the values $S[i]$ for $i = 0,, 10$). If $n > 10$ then $S[j] = 1 + \min\{S[j - 1], S[j - 7], S[j - 10]\}$. Thus, finding $S[n]$ takes $O(n)$. Now we can find $S[n]$ easily as above, but knowing this does	- Circulation: directed graph G=(V,E) edge capacity Cle), e 6 E
	not tell us the exact nature of the stamps we need. It would be nice to know that we can a make 45c postage with six stamps, and that we need one 1c, two 7c, and three 10c stamps	nice support demonitors ally
	to do so. (For some values of n there could certainly be more than one way to do this. For example, we can get 63c with nine 7c stamps, or with six 10c and three 1c stamps.) Well, we can easily do this too with another array called, say, P. Then $P[n]$ will be a vector of	$\frac{-8}{6}$ supply. $d(v) < 0$ $d(v) > 0$
if i=0 or j=0	length 3 that will tell us what stamps we need to make postage for nc. For example, we would have $P[45] = (1, 2, 3)$, meaning that we need one 1c, two 7c, and three 10c stamps. In	
if X[i] = Y[j]	general, if we have $P[n] = (a, b, c)$, then we take a 1c stamps, b 7c stamps, and c 10c stamps — to make nc postage. — The calculation for $S[n]$ doesn't change. All we do is determine which denomination of	-7 • sum supplies = sum & demands Zvidanso du = Zvidanko du
) if X[i] ≠ Y[j]	postage we use and add it to the appropriate value of $P[n-1], P[n-7]$, or $P[n-10]$. The running time is still $O(n)$. Transfer have steep 1	demands

Classify Problem. (Reduction) X ≤ pY : Problem X (polynomial reduces to problem) Transitivity : if X = pT and T = pZ, then X = pZ Equivalence: if X <= p T and Y <= p X, then X = p T Decision Rob =p Optimization Rob = p Search Prob - Independent Set: From G = (V.E), a subset of vertices SCV is I.S. if no two vertices of S share an edge. - Vertex Cover: S SV such that ISI SK, and for each edge, at least one of its endpoints in S. $TS \equiv V.C$: V.C = k iff T.S = n-k- Set Cover: Griven set U of elements, a Collection S., Sz, ... Sn of subsets of U & k that collection of K = U SP S 1/= {1,2,3,4,5,6,97 **a b** 04 k= 2 Su={3,13 PC Sc { 3, 4, 5, 6} 26 ls Se= {1, 2, 6, 13 10/ atisfiability: literal: x or x clause: A disjunction of literals. Cy = X, V X, VX3 Conjunctive Normal Form (CNF) a proportional formula that is the conjunction of clause O= CIACZAC3AC4 SAT: given CNF formula \$ does it have a softisfying truth assignment. can assign Tree/False values so that & evaluates to true. 3-SATT: SAT each clause contains 3 literal $(\chi, \chi\chi_2 / \chi_3) \Lambda (\chi, \chi\chi_2 / \chi_3)$ YES: 31 =T, 22=T, 23=F Proving NP-Completeness show problem is in NP provide Certificate, and polynomial time certifier Proving NP- Hardness: give polynomial time reduction from NP-Complete problem to show that every NP reduces to 64. : every NP-complete problem can be reduced to/from every other NP-complete problem.

Prove that CLIQUE is NP-complete by using a reduction from 3-SAT Guided Solution: Problem 3 Proving Clique is in NP Proving a problem is in NP is often very straight forward. To define a certificate we have to think abo what defines a solution to the problem. Let a certificate for Clique be the graph G(V, E), a subset of node $S \subseteq V$, and an integer value k. Arguing the correctness: The certifier first checks that the size of S is k (it can do this in O(k) time). It then iterates throu every possible pair $\{u, v\}$ in S and checks that the edge (u, v) is in E (it can do this in $O(k^2)$ time) in Figure 3) Proving Clique is NP-Hard Following the steps in the "guide for answering tutorial questions": 1. Identifying which problem to reduce from The question already tells us to reduce from 3-SAT, which is an NP-complete problem. But let's thin about why this might be a good choice. Let's start by formally defining both decision problems Clique Given a graph G, does there exist a complete subgraph of size at least k' 3-SAT Given a CNF formula, does the formula have a satisfying truth assignment? At the moment, it doesn't seem like these two problems have much in common. So let's re-phrase t Clique Given a graph G, does there exist a subgraph such that each node in this subgraph is connected t every other node in the subgraph 3-SAT Does there exist a truth assignment such that for each clause in the CNF formula the assignment its variables allows all other clauses to have at least one literal that eva ates to TRUE reduction in Figure 4 is correct With this new formulation we can see that the problems share some similarities, such as the fact that they both have components that need to be "satisfied" in some way $(\vee x_1 \vee x_1) \wedge (x_1 \vee \hat{x}_1 \vee x_1) \wedge (x_1 \vee \hat{x}_2 \vee x_2) \wedge (x_1 \vee x_2) \wedge (x_2 \vee x_2) \wedge (x$ 2. Translating an instance of 3-SAT into an instance of Clique: We can visualise the reduction as shown in Figure 1 3-SAT instance YES for Clique implies YES for 3_SAT Translate instance $\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land$ 3-SAT instance Clique instance east m. So how do we do this Figure 1: Visualisation of the reduction Let's assume we have a YES-instance of 3-SAT. 3-SAT Clique graph s si Instance $(\bar{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land \dots$ Literals x1, x2, x3,...,x8 Nodes O Components Clauses $(\bar{x}_1 \lor x_2 \lor x_3)$ Edges There exists a truth There exists a Properties of a YESssignment such that even complete subgraph of size k clause contains at least 1 all *m* clauses are satisfied instance TRUE Figure 2: A breakdown of the components and properties of each problem you can come up with an example yourself) Clique in polynomial time. What we learn from this is that we actually want to be quite careful in how we define the compon of the problem we are reducing to (clique in this case) to encode the properties we want to achieve in the (Attempt 2) The property we are trying to achieve is that Clique can only have the necessary edges for a complete We are now approaching what we can assume is a valuable reduction so it's time to test how bulletproo it really is. In particular, can we think of an example of where a YES-instance might map to a No-instance or vice-versa? Issues with attempt 2 Imagine a CNF where all clauses are all 8 possible permutations of 3 literals. No matter what we use as the truth assignment for the 3 literals, there will always be one of the clauses where all literals evaluate to FALSE. Hence, this is a NO-instance for 3-SAT. However, for every pair of clauses, there So not quite bulletproof yet it seems. Let's unpack the cause of this issue. It seems that it is possible to assign edges to a classes that each require a different/contradictory truth assignment and hence the clique instance can get a complete subgraph even though the original SASI instance was not satisfiable. How can 3. Finally, we set the target k to be n (Attempt 3) To avoid clauses having multiple edges that require different/conflicting truth assignments, we can de $F = (x_1 \lor x_2 \lor x_4) \land (\bar{x_1} \lor x_3 \lor x_4).$

To translate a CNF formula for the 3-SAT instance to a clique instance we must first identify the components that make up both a 3-SAT and a clique instance. We know from the lecture that a clique instance consists of a graph containing nodes and undirected edges. We also know that a 3-SAT instance consists of n literals and m clauses, which are each a disjunction of 3 literals

instance we are reducing from (3-SAT in this case)

the project we we trying to matter a cush camp can only invo the necessary tages on it compares subgraph of a certain size (in other words, a YES-instance for clique) if and only if there exists a truth assignment in the original 3-SAT instance s.t. every clause contains at least 1 TRUE (in other words, a YES-instance for 3-SAT). So a second approach from the description above could be to create a node for every clause and only connect them by an edge if there exists a truth assignment such that both contain at least 1 literal that evaluates to TRUE.

exists a satisfiable truth assignment such that the clauses both evaluate to TRUE. Hence, our resulting graph will have a complete subgraph of size 8 and thus the translated Clique instance will be a YES-instance.

we fix this?

be following. For each clause c of F we create one node for every partial assignment to variables in c that satisfies c (i.e. the clause evaluates to TRUE). E.g., say we have:

Then in this case we would create nodes like this

 $(x_1 = 0, x_2 = 0, x_4 = 1)$ $(x_1 = 0, x_3 = 0, x_4 = 0).$ $(x_1 = 0, x_2 = 1, x_4 = 0)$ $(x_1 = 0, x_3 = 0, x_4 = 1)$ $(x_1 = 0, x_2 = 1, x_4 = 1)$ $(x_1 = 0, x_3 = 1, x_4 = 0)$ $(x_1 = 1, x_2 = 0, x_4 = 0)$ $(x_1 = 0, x_3 = 1, x_4 = 1)$ $(x_1 = 1, x_2 = 0, x_4 = 1)$ $(x_1 = 1, x_3 = 0, x_4 = 1)$ $(x_1 = 1, x_2 = 1, x_4 = 0)$ $(x_1 = 1, x_3 = 1, x_4 = 0)$ $(x_1 = 1, x_2 = 1, x_4 = 1)$ $(x_1 = 1, x_3 = 1, x_4 = 1)$

We then put an edge between two nodes if the partial assignments are consistent. This way, we can be certain that every complete subgraph of the resulting clique instance must correspond to a truth assignment with no contradictory assignments s.t. at least 1 literal evaluates to TRUE. Hence, we can conclude that a complete subgraph in this new graph must indeed imply the original 3-SAT instance was satisfiable.

Now that we have designed our reduction, let's argue it's correctness

It's important to understand how to prove the correctness of a reduction so let's go through it in detail. As explained in the lectures, to argue the correctness of a reduction, we want to prove two claims (as visualised

Does the CNF formula have a satisfying truth assignment?	YES-instance maps to a YES-instance	Does there exist a comple subgraph of size m?

Figure 3: Mapping yes-instances

1. A YES-instance of 3-SAT will always be transformed into a YES-instance of Clique

2. Any YES-instance of Clique must stem from a YES-instance of 3-SAT

If we can prove the above claims then we have proven that the blue arrows in the visualisation of our

Figure 4: Proving correctness of a reduction

Let's start with the first claim. In this claim we assume we have a YES-instance of 3-SAT. Hence, we can gnore all NO-instances of 3-SAT. The goal of the proof is to use this assumption along with the definition of our transformation to prove that the transformed instance must contain a complete subgraph of size at

The reduction will create a node for every possible partial assignment to variables that results in the clause having at least 1 variable that is assigned TRUE. Since our 3-SAT instance is a yes instance, we know that there exists a truth assignment, which ensures every clause has at least 1 literal that evaluates to True. Hence, this truth assignment will be amongst the truth assignments in our nodes. Since, by definition of the truth assignment being satisfiable, and the construction of our edges in the graph, there exist m nodes in the graph that are all connected to one another, there will exist a complete subgraph of size m in the new

To prove our second claim we want to do something similar to the above only this time we can only ssume that the reduced Clique instance is a YES-instance, but we cannot assume anything yet about our 3-SAT instance. So let's assume we have a YES-instance of Clique. This means that there exists a subgraph of size m such that all nodes in the graph are connected by an edge. Having this information, which properties can we conclude the original 3-SAT instance, from which this instance was reduced, mus have? Well, since each node represents a partial assignment of variables in a clause and an edge means the truth assignments are compatible, we can conclude that, given their corresponding truth assignment, a least m clauses are all compatible with one another (we know they must all be distinct nodes since 2 nodes of the same clause cannot share an edge as they have conflicting partial truth assignments). Since m is the number of clauses in our original problem, we can conclude that there exists a truth assignments such that

Confirming the reduction is polynomial-time

Finally, we need to argue that we can translate any arbitrary instances of 3-SAT to an instance o

Since our transformation creates a node for every possible truth assignment for every node, we know that our resulting graph will have at most 2^3 nodes for every clause. Hence the construction of the nodes takes O(m) time. Since we create edges based on whether a truth assignment is compatible, we can do this in constant time for every pair of nodes. Hence, the construction of edges will take at most $O(m^2)$ time. This means the overall time for step 1 is $O(m^2)$, which is polynomial in the size of our input to 3-SAT. Hence, we can conclude that we have designed a polynomial-time reduction from 3-SAT to Clique.

iven a graph G = (V, E), a distinguished subset of vertices $X \subset V$ and a number k, the Steiner Tree röblem is to decide whether there is a set $S \subseteq V$ of size at most k such that $G[X \cup S]$ is connected. Prove that this problem is NP-complete.

Solution: The problem is clearly in NP. The certificate is the set S of k nodes whose addition to X connects the set, which is trivial to check in polynomial time. To show that it is NP-hard, we reduce 3-SAT to it. Recall that an instance of 3-SAT nsists of a formula $\phi = C_1 \land \cdots \land C_m$ over variables x_1, \dots, x_n such that each clause C s the disjunction of three literals. The question is whether there is a truth assignment that Satisfies an crauses. We define a graph G = (V, E) and a target k based on ϕ :

- For each clause C_i we create a vertex u_i ∈ X; for each variable x_j we create a vertex v_j ∈ X; we also create a dummy vertex d ∈ X. Additionally, for each variable x_j we create two vertices a²_j and v⁴_j that belong to V \X.
- For each variable x_j, we create the edges (v_j^T, v_j) and (v_j^T, v_j). For each clause C_i, if C_i contains the literal x_i then we create the edge (u_i, v_j^T), while if C_i contains the literal \bar{x}_j then we create the edge (u_i, v_j^T) . Finally, we connect d with every v_j^T and

Notice that in order to connect v_j with the rest of X we must select either v_j^T or v_j^F into the set S; since k = n, exactly one of them must be chosen for each j = 1, ..., n. There is a to-one correspondence between truth assignments for the variables and a choice betwe Γ and v^{F} for each i = 1, ..., n, which will define our set S. It is not difficult to show that a truth assignment is satisfying if and only if for the corresponding S, the graph $G[X \cup S]$ is connected. (Notice that if we hadn't added the dummy node d the reduction would not 4 coloring

is connected. (valuer and it we name it assume the dummy node due reduction would not Solution: (Stack). Let G = (V, E) be an instance of 2-COLOR. Create A-color instance G' = (V', E') where V' consists of V plus A new vertices n_1, n_2, n_3, n_4 . The 'consists of E plus all the edges between the new vertices and all the edges between n_1 and V. The instance G' can be created in time O(n + m) since we only need to copy over G, and create a constant number of new vertices and edges between them plus the n new edges between

Suppose that G is 3-colorable. Consider a 3-coloring of G, call the colors R, G, B and let c(v) support takes to be a support of the color support are colored differently because c is a 3-coloring of G, the edges between v_1 and V are also fine because v_1 is colored differently than any vertex in G, and finally, the edges between The because c_1 is construction. Suppose that G' is 4-colorable. Then it must color V using at most 3 colors since otherwise

will have the same color as one of the vertices in V. Thus, G is 3-colorable. (Alternative reduction.) Create G' by simply adding a single vertex v_1 that connects to all

of V. Same proof as above.

Edge	Disi	pin	Pat	:h	;	pat	hs c	do.	not	
share	Dise	find	max	e	lge	dis	ioint	5-t	paths	
			> eqn							
	1 1					1				

Baseball Elimination: Correctness

game nodes (4-5)

C visits every wode.

NP-Completeness

Independent Set

Verter Cover

Set Cover

Segmented

permutation.

Steiner

Tree

OPT(j) =

aames left

Theorem. Team 3 is not eliminated iff max flow equals the total number of games left.

- ← (Need to translate flow into outcomes of remaining games)
- Suppose there exists an integral max flow with value = total # of games left - Flow on middle edge from game node (x-y) to team node (x) equals # of

team nodes

Janare

 $\min_{1 \le i \le j} e(i, j) + c + OPT(i-1)$ if j > 0

Hamiltonian Cycle : Simple cycle

certificate : E = a permutation of n nodes.

certifier check perm contains each node in V

exactly once & there is an edge between

- Graph Coloring: a proper coloring

is coloring of vertices such that every

edge has 2-different colors at its

end points * 3-SAT REDUCES TO 3-COL

CIRCULAR-SAT

3-SAT

DIR-HAM OYOLG

HAM CICLE

TSP.

- Constraint satisfaction problems: SAT, 3-SAT.

- Packing problems: SET-PACKING, INDEPENDENT SET

- Covering problems: SET-COVER, VERTEX-COVER,

- Sequencing problems: HAMILTONIAN-CYCLE, TSP.

- Partitioning problems: 3D-MATCHING, 3-COLOR.

- Numerical problems: SUBSET-SUM, KNAPSACK.

Planar 3-color scheduling

subset SUM

Geogh 3-color

each pair of adjacent nodes in the

if j = 0

matches between teams x and y that team i wins. - Capacity on (x, t) edges ensure no other team wins too many games.