.

Asqv\mwl-

{. Oebina. Lrvvacy éowsm\ 0s X 4o an oplimol
Solution Ka?k

). (om?m Slwiion ot X ?‘Xqﬁ

3. Erchonge Prece fouto Hondorm Kop twho X by

axchongjnoy somo. piece. ok Xorl-{:br wone fiece o X
wibhouet wmng/decrmm@ tot At

Xyt
4 lterate wnil X =Xept.

(nusulm the following greedy algorithm. We will use x to denote the amount
x = n; while 2 > 0, output the stamp with the largest value that is
at most = and subtract its value from z.

We will prove correctness by anf@XChange argument. L(@- the sequence of stamps output
by the greedy algorithm and S* be an optimal set of stamps, sorted from largest value to

smallest. If S = hen S is optimal. Letw; and @ be the value of lln*q:??mnnp in S
and_S7, respectively/Consider the first inde uch that the j=th stamp in S has a different

value from the i-th si be

amp in S*. Let
stamps. Since greedy chooses the stamp with the largest value that is at most/@)for
stamp, it must be that v; > v i
by every smaller_denoniina each with value less than v;
whos Thus,
replacing T with a Sigle stamp of value v results in a solution with fewer stamps than(S7.
But this contradicts the optimality of S*. Thus, we conclude that S = S* and that greedy

1e remaining value left after the first i — 1
ts i-th
ach_denomination can be divided evenly

xists a subset(7)of

total value is exactly v;- Such a subset must consist of at least two stamps.

is optimal.

The running time of this algorithm is O(n).
at least 1 per iteration.
lar,

There are at most n iterations as x decreases by
In each iteration, it takes O(1) time to determine the value of the
st stamp at most = and to increment s by 1.

D“L b sise 4 aubprob - i
Twe dy 4 Dwide & N
Mogiex Theor /7‘ ™ |
T oT(%) e £ w2l
c b ngd
1t fimr e 06T E) b g 50, b EIEDH)
2ilbta- O(nby") b k20, sen T (1514

3£ = QL) 2 af(%) € i o £30 54
ther Tonl= @ ()

1. Dnide * brak o subffWS. Hat are themaebes swaler
indowes 4 same fgp&d#& origwol problem.

Lf)elegm facusiol| schang these voriolde.

S Longuer . Ofpropriately combing (wargry) problen-

Solution: Suppose you have a sorted list of the white dot positions and the black do|

positions. Then you should match the ith white dot with the ith black dot.

To prove that the algorithm is optimal consider an opt lut nd the solutio
X produced by the greedy algorithm. Again

there must exist a

Otherwis
call such a pap an inversior
To simplify the argument we assume that i < ; and that w; is the leftmost white point tha

is part of an inversion.
Since w; is matched to b;, b; must be matched to some wy with k > i,
We argue that we can remove an inversion in the optimal solution @@ and the cost of th

matching will not increase. First/consider the cost of matehing thescENOIPAES in the optims
solution:

= C(wi, bj) + C(wk, bi) = |wi — bj| + |wi — bil.

) and (@igb;) we would get:

b;

If we replace these two pairs with (W, b;)

C' = C(w;, b;) + Clwg, bj) = |w; + |wi — byl

There are three cases depending on wy’s relative position between b, and b;.

1. When it’s smaller than both of them the ¢oSt/Stays/the/same: indeed, then w; < wy <
b; < b;, and so
C—C' =bj—w; +b—wi — (b —w; +b; —wp) =0
2. When its smaller than just b, (Welave by <€ b)) (and since w; < wy, we also hav
w; < b;), and
C —C' =bj — wi + wk — bi — (|wi — bi| + b; — wi) = 2wk — (bi + wi + |wi — bi])
Since b; + w; + |w; — bi| = 2max(w, bi) (check it! a+ b+ |a — b| = 2max(a, b)) an
wi > max(w;, b;) (since wy > w; and wy > b;), we get
C — C' = 2wy, — 2max(w;, b;) > 0.
3. When it’s bigger than both of them, we have b; < b; < wy, and so
C = C' = |w; — bj| + wi — b; — (|Jw; — bs] + w — bj) = |w; — bj| — |wi — bs| +b; — b
Now, by the triangle inequality, |b; — bj| + [b; — w;| > |b; — w;, Lewfbjemtogl— b;

w;| + |b; — b;| > 0. and since b; — b; = [b; — b;| as b; > b;, this last inequality is sayin
that
C=C>0
in this case as well.
Therefore we can remove the inversion in X, and guarantee that we still have an optimz

solution. This argument can be iterated until we have no more inversions in the solutio

and, hence, the greedy solution must be optimal since it has no inversions.

V% Time Com(\aay'- rum . SWb problevs.
1. Debwe P is M."sdwfs fob s

2 Dobu Reswranee * ke coses. 29 € pog ot i |-
3. Dobve Boe lase i sove bopse caser

1456;‘%‘1‘“*‘ 1-% ovder

So now we know that we need to keep track of both the number of campsites (i) and the number of days
left (€) to define a recurrence.

s

We thus re-define our subproblem as follows:
Let M{[i,l] be the optimal minimum maximum distance walked in a day to get to campsite i in £ days.

Satisfying Property 1:
To ensure we only have a polynomial mumber of subproblems we must again ask ourselves which subproblems
are related to the original problem. For example
k + 1 days won't help us figure out how to get thei
we need to Mi,f] forall0 <i<n+l,and0< £ <k

calculating the optimal solution for getting to newcastle in

e in k days. So we can narrow down which subprot

This gives us O(nk) subproblems, which |\;...|\....u..<|

tisfying Property 2:
The subproblems satisfy the second property because the solution to our original problem is in itself a
subproblem, namely Mn + 1, k

Satisfying Property 3:
When we visualise the solutions to our subproblems in a table (see
subproblems satisfy a natural ordering as well

> Figure we can see that the

fying Property 4:
in, even though the first three properties of a good subproblem are satisfied, we won’t know if this

tried to define a recurrence.

definition of our subproblems will work until we ha

(/52/ & (V\J«A(J["or\ prvo(’

2. Recurrence:

Solution: The algorithm starts at the root and does the following recursively. If the current
vertex is an internal vertex with smaller weight than both of its children, return the current
vertex as a local minima; otherwise, If

recurse on one of the children with smaller weight.
the current vertex is a leaf, then return the current vertex as a local minima.

To see why this is O(logn) time,
return the current vertex and
whenever we recurse, we go down one level of the binary tree. Since a complete binary tree
with n vertices has at most O(log n) levels, the total time taken by this algorithm is O(logn).

note that we take O(1) time to decide whether to
as a local minima or to recurse on one of the two children,

The proof of correctness is easiest to see without using induction (see below for an induction
proof). Suppose, towards a contradiction, that the algorithm returns a vertex v that is not
a local minima. By definition of the algorithm, v cannot be an internal vertex because the
algorithm only returns an internal vertex u after checking if its weight is indeed smaller than
all of its neighbors. Thus, v must be a leaf. But then the algorithm reached v only because

the v’s parent has larger weight than v. Since v is a leaf, its parent is its only neighbor.

Thus, v is a local minima.
Here’s a proof of correctness via induction.
Basé ¢ase:” (n = 1) The algorithm correctly returns the single vertex as a local minima.

Induction™case:” (n > 1).

less than n vertice:

Suppose the algorithm is correct for complete binary trees with
If the root r is a local minima, then the algorithm correctly returns
the root. Otherwise, suppose the algorithm recursed on r’s child u, and let v be the vertex
returned by the recursive call. There are two cases: either u = v is a child of the root r or
not. In the latter case, the correctness follows from the induction hypothesis. For the former
case, the induction hypothesis only tells us that v is smaller than both of v’s children. We
still need to show that v is smaller than its parent r. But this follows from the fact that we
recursed on v precisely because v is smaller than r.

Some. Pouk - Prcessing Alagrithmn
Sodt OCWkaﬂw])
Clostt Pt b Pt O(quth])

Maxemvanm s
e oo
foramuion

O
Les Ow)
Recurrence
T = 2T0%) 3 Obr] 3 Olwleg)) ¢ o

Yvofio
Tn) = 27(%4) +(‘)(lgg(m) >0(n) w1 m(-{:.,;-—llvli‘-l
Tin) = 27(%]4001) > On] R

Ttn) = T(4) +0rn) >O0(n)
T = 1A) + 0(1) O0lwgi))
T = T(r-1) +lw S op™)
Tln) = TA-1) 001 2 O(w)

Lecs]
ML1i] < 1 mox(MG 3] +)
wox(MLz, 3], MLS-13T)

§ i o jro

i K[2 = YIi]
X #YT3)

Mwl%%m

We use the same approach as before.

Assume we have an optimal solution M i, €) to reach campsite i in £ days. Let j be the last campsite used
before reaching our destination i. By camping at campsite j we spend a whole day. Therefore, we can find
the optimal campsites to stay at before campsite j by finding the optimal solution to get to campsite j in

€—1days (M(j,(—1)). From here,
i in € days will be the maximum between the minimum mazimum distance walked to get to j (M(j, ¢
and the distance between j and i (

the minimum maximum distance walked on any day to reach campsite
1))
see Figure[1). Let us denote the distance from campsite i to campsite j
as D(i, j). We can express this as follows:

M(i, €) = max{M(j,(- 1), D(j.i)})
So far we assumed we knew what the optimal solution is. In reality. we still need to figure out what j
Since the solution is optimal we know that j must be the campsite to the left of i that minimises the
Thus:

is
expression above

M) = mm{m.\,\(,\l\/ €—1),DG,i 2
-—

3. Base case: Now that we have our recurrence the next step is to define our base case.

recall that our base case has to satisfy 3 main properties:

Again, we

1. “PRIIAT 6 Solye without the need for smaller subproblems.

>

2. Can be solved in constant time

3. In a top-down approach, ensure it will always be reached. In a bottom-up approach, ensure you will
never require a smaller subproblem to build up your solution
Let’s consider i = 1 and £ = 1. The optimal solution to get to campsite 1 in 1 day is simply D(0,1) so
that is indeed trivial and can be solved in constant time. However, we must again ask whether it can always
be reached. From our recurrence we can determine that we will need to compute M(j. £ — 1) for every j < i
ne we are trying to compute M (i, 1) where i > 1. To compute this we must compute, for all 0 < j < i
M(j.0). However, from here we can never get back to our base case where £ = 1 since we always reduce the
value of ¢ in our recursive calls.
But let’s think for a moment about the solution to M (i, 1)
as trivial as getting to campsite 1 in 1 day

Getting to campsite i in only 1 day seems
The optimal solution will still be the distance between campsite
0 and campsite i. Hence, we can conclude that our base case doesn’t need a specific value for i. It is simply
M(i, 1) = D(0.1).

: We have defined an O(nk)-sized table to store the solution to our subproblems
(to avoid repeating any computations). Next, in order to turn the above into an algorithm we need to decide
on which order to evaluate the \ul\prnhlunr in.

ot o P . 5

Solution: Let S[n| denote the minimum Immlnx of stamps needed to nmk postage Im n
cents. We clearly then have

These cases above should be considered our " and we then work from these to
conmpute values of S[n] for higher values of n. The main idea, then is to consider what
happens if we use a stamp of o EFCHAENAIR. For example, if we want postage of GHGEHE
then we can clearly get it by taking @HEStAMPORTe. and SESIPSEREDS (of appropriate
values) to make up the remaining postage of (n — 1)e. Or if we take a 7c_stamp, then we
need S[n — 7] stamps (of the right values) to make up the rest, and similarly if we take a

mp. This idea is essentially the heart of the dynamic programming algorithm that
we use. o Wre lon u-m P add ome 10c
Set up the array S startjig as above (with the values S[i] for i = 0,...,10).

If n > 10 then S[j] = 1% min{S[j
Thus, finding STn] takes O(n). T
not tell us the exact nature of the stamps
make @5C'POSEARE with six stamps, and th

to do so. (For some values of n there could

S[j = 7, S[i — 10]}

ow we can Fnd S[a] castly as above, but knowing this does
eed. It would be nice to know that we can
rwed one le, two Te, and three 10¢

tainly be more than one way to do this. For
we can get 63c with nine 7c stamps, or with six 10c and three l¢ stamps.) Well
can easily do this too with another array called, say, P. Then P[n] will be a vector of
length 3 that will tell us what stamps we need to make postage for nc.
would have P[45] = (1,
general, if we have P[n

example,

we

For example, we
), meaning that we need one lc, two 7¢, and three 10c stamps. In
(a, b, c), then we take a lc stamps, b 7c stamps, and ¢ 10c stamps

to make nc postage.
The calculation for S[n] doesn’t change. All we do is determine which denomination of

postage we use and add it to the appropriate value of P[n — 1], P[n — 7], or Pn — 10]. The

ﬂ@w Ndmlk
s-¢ flow MAX FLOW £ MIN YT
Copacity Conshoint © ¢t E + 0 s{le)s c@)
@ i sotundod i Havcle)
" Comservotion Constoint : veV\{st}:

Ze;uw{
eoﬂ;lron (A.B) oA V with 3:%
copetty ot wt (D) = Z<t®)
Augmm};nd Pw“n qui“wn.

—> 5-b podh in G caked on Guamenting-podly-
ba-botleneck(BF) $ win apetly in 1esiduol qoph

Pt €t sc Ao otiginsd Aotwork
Us Voedias nchoble Gom St e Tecsbuol network. for mox flow.

Ford - Fulkersen OCnM‘)(m vy oy fﬂﬂf@
oford —Fullceson w shorkest aug val:f,mj will fun N
e ordet & O(Crem)Cam®)) w\lq[(:')\-ke-r
-od:v. s Algmsum O (man)nm)

Feth O mn)

rde ~Wopp * O 1% o (F
L; dontil o Ford - Fulaton, BUT dofmad wiy poth
(b%)

aAle) Residnal Nohwrk
VAR PALN
W W

-4 aut s

3
1

22
Traneform Algo-('w ‘Fuw"wm ol
X by
K oy [7\ gy fsoenfr| 3

Afpmnac MAX FLOW
- 'B'\omwb 2 OMSE s makding
@adn vaje aypmrs'& at wost e edge
ie) MWN\ L& (LUQEJ

waicling
& esun node oppears n e)w;H one,alqos M.
Ll = IR 4 copoutky 2% fow= 1L1=1R0

ﬁ;%%a wﬁ@s %ﬂ%w %(3) be
(NC$)(> s {zvr ol 3%9% SeL
Theorem i [N(s)] > IS]
- Cieulodton * Jugsked quph G+ (2]
vdoe Clel, e6E
wede demands d(v)
sum Supphes = Sy & demands

T vrdirre ¥ e 40

dev go

running time is stilO(n L Pl S

Roblewm. (Reduokiow.)
bobleon X ool vibiccr . proon T
X EpY wd V42 o X<pZ
E(pﬁwlmv’ # XEpY md Y'S PX/'HMM XY
D Rol | Zp posasito Fob Ep Semtth Pk
-(W Ser: from G- (V.E). a suosot
A verkices SCV s TS i o two worhiees o
S shace, an adqb
~ lbrter Covor: S SV s tron USIER, avd &
eocl edge, GRNGETOMR & s endpoiris in S

IS Ep Vc IVCl=k € |I_S|:y1-k

Closg
X
Towns i-}lej

- Set Lovar: Goven <2t U o elomants, o
Colleckan S5, -Sn # subsets £ U & k that
colieckon of k = ()

V(< S.C
a b

{Lnss, a,'l}
k=2
Su+{3.1%
Se43,4,5 Gj
s {a" Zl _j

—Sat.em.l ool : & o %
clowse * A diguton o Iemls.Cq =%V A VA

(aﬁun&m Namol Form (CNF) + o profortiond

Pormuor © that ic e conguncttdn of clane.
b= G NG NG AL,

SAT : gven ONF fomule | doex @ e n

Soichgrg truth oesiqumelit . coun asigN Troio/Foist

Wues 20 st & eualustes o true.

2-SAT: SAT eachn Clowse cowboins 3 liteml

(% V%V %) A(X, V2LV)
WS % =T, %=T, K =F

vafng - Cﬂwfle’lutss - show peoblom « W NP
provide- Certefioode, 00 polynonaal +ime. cartter
Poving NP Hadress -

Qv rlﬂwma-l hwgs=iudusisn fom
\P- Lonhote. roblom o show that
ooy NP Towes o #.

tiory NP-cmplote problen can
be @sved 4o/ fom gory—otier
WP<zoteprobiom.

frobiem J
Prove that CLIQUE is NP-complete by using a_reduction from 3-SAT.
Guided Solution:

Proving Clique is in N
Proving a problem is in NP is often very straight forward. To define a certificate we have to think about
what defines a solution to the problem. Let a certificate for Clique be the graph G(V; E), a subset of nodes
S CV, and an integer value k.

“The certifier first checks that the size of S is k (it can do this in O(k) time). It then iterates through
every possible pair {u,v} in § and checks that the edge (u,v) is in E (it can do this in O(k?) time).

Proving Clique is NP-Hard

Following the steps in the

“quide for answering tutorial questions”:

1. Identifying which problem to reduce from:
The question already tells us to reduce from 3-SAT, which is an NP-complete problem. But let’s think
about why this might be a good choice. Let’s start by formally defining both decision problems:

Clique Given a graph G, does there exist a complete subgraph of size at least k?
3-SAT Given a CNF formula, does the formula have a satisfying truth assignment?

At the moment, it doesn’t seem like these two problems have much in common. So let’s f6Spliase the
problems as follows:

Clique Given a graph G, does there @i SIBEEAPH such that cach node in this subgraph is connected to
every other node in the subgraph?

3-SAT Does there
its variables

ist a truth assignment such that for Gach elause in the @CNE formula) the assignment of
allows all other clauses to have @Ieast one literal that évaluates to TRUB?

With this new formulation we can see that the problems share some similarities, such as the fact that they

both have components that need to be “satisfied” in some way.

2. Translating ¢

n instance of 3-SAT into an instance of Clique:

We can visualise the reduction as shown in Figure
YES for Clique Implies YES for 3_SAT
5V Va) A Vi A..| Translate instance >
3-SAT instance Clique instance NO for Clique implies NO for 3 SAT
Figure 1: Visualisation of the reduction
To translate a CNF formula for the 3-SAT instance to a clique instance we must first

identify the components that make up both a

<1

We know from the lecture
s. We also know that a
nd m clauses, which are each a disjunction of 3 literals.

3-SAT Clique

and a clique instance.
that a clique instance consists of a graph containing nodes and undirected ed

T instance consists of n liter:

Instance = (5, V% Vi) A VHVI)A... N
Literals %% % oo %, Nodes O
Components
P Clauses vV Edges ——
) There exists a truth T aleis'a
Properties of a YES- assignment such that every ok
instance clause contains at least 1 subgraph of size k
TRUE
Figure 2: A breakdown of the components and proverties of each problem

you can come up with an example yourself)

What we learn from this is that we
of the problem we are reducing to (clique
from (3-SAT

tually want to be quite careful in how we define the components
case) to encode the properties we want to achieve in the

instance we are reduc

(Attempt 2)

The property wi
subgraph of a certa

e trying to achie

Clique can only have the necessary edges for a complete
n size (in other words, a YES-instance for clique) if and only if there exists a truth
ssignment in the original 3-SAT instance s.t. every clause contains at least 1 TRU
nstance for 3-SAT). So a second approach from the description above could be to create a node for
use and only connect them by ists a truth assignment such that both contain at
teral that evaluates to TRUE.

in other words, a

an edge if there

-

We are now approaching what we can assume is a valuable reduction so it’s time to test how bulletproof
it really is. In particular, can we think of an example of where a YES

instance might map to a No-instance

or vic sa?

Issues with attempt 2

Imagine a CNF where all clauses are all 8 possible permutations of 3 literals. No matter what we
as the truth nment for the 3 literals, there will always be one of the clauses where all literals
evaluate to FALSE. Hence, this is a NO-instance for 3-SAT. Howe ir of clauses, there

exists a satisfiable truth assignment such that the clauses both eval
graph will have a complete subgraph of size 8 and thus the translated Clique instance will be a Y

So not quite bulletproof yet it seems. L
ause that each require

ns that it i

s unpack the cause of this issue. It

possible to
the clique
How can

and he

a different/contradictory truth assignment
r

instance can get a complete subgraph even though the original stance was not satisfiable.

we fix this

(Attempt 3)

TRIGPISEARE hat. requirc FTERE
r each clause ¢ of F we c e one node for every parti;
e evaluates to TRUE). we have:

truth we can do

To avoid cla
F assignment to variables in ¢ that

the followis

satisfies ¢ (i.e. the cla

F=(2 VI VIg) A(d Vs Vy)

Then in this case we would create nodes like this:

(#1=0,22=0,z4=1) (x1=0,23=0,z4 =0)
(a1 =0) (z1=023=023=1)
(a1 =1) (z1=0,a3=1,24=0)
(a1 =0) (©1=0a3=1z4=1)
(1 =1) (@m=LlLa=0z4=1)
(a1 =0) (z1=1las=12,=0)
(1 =1) (@m=las=1la,=1)

We then put an edge between two nodes if the partial assignments are consistent.

This way,

we can be

certain that every complete subgraph of the resulting clique instance must correspond to a truth assignment

with no contradictory assignments s.t. at least 1 literal evaluates to TRUE. Henc

Now that we have designed our reduction, let’s argue it's correctness.

Arguing the correctnes:
It’s important to understand how to prove the correctness of a reduction so let
explained
in Figure

go thron

, we can conclude that a
complete subgraph in this new graph must indeed imply the original 3-SAT instance was satis

able.

it in detail. As

the lectures, to argue the correctness of a reduction, we want to prove two claims (as visualised

YES-instance maps to a YES-instance

Does the CNF formula have a
satisfying truth assignment?

YES-instance came from a YES-instance

Does there exist a complete
subgraph of size m?

Figure 3: Mapping yes-instances.

1. A YES-instance of 3-SAT will alw

s be transformed into a

2. Any YE!

AT

nstance of

instance of Clique must stem from a YE!

YES-instance of Clique

If we can prove the above claims then we have proven that the blue arrows in the visualisation of our

reduction in Figure

Translate instance
»

5 VHVI)A GV VI A

3SAT instance Clique instance

Figure 4: Proving correctness of a reduction.

Let’s start with the first claim. In this claim we assume we have a YES-instance of 3-SAT. Henc

ignore all NO-instances of 3

VES for Clique imples YES for 3_SAT

NO for Clique implies NO for 3_SAT

, we can

The goal of the proof is to use this assumption along with the definition

of our transformation to prove that the transformed instance must contain a complete subgraph of size at

So how do we do this.
assume we have a YES-instance of 3-SAT.

least m.
Let

The reduction will create a node for ev pos ignment to v
clause having at least 1 variable that is assigned ']
that there
Hence,

truth assignment being satisfiable, and the construction of our edges in the graph, the

ible partial
RUE. Since our :
ists a truth assignment, which ensures eve

clause h:

this truth assignmes

the graph that are all connected to one another, there will exist a complete subgraph of s

graph.

To prove our second claim we want to do something similar to the above only this time we

assume that the reduced Clique instance is a YES-
our 3-SAT instance. So let’s assume we have a YES-instance of Clique.
subgraph of size m such that all nodes in the graph are connected by an edge.
which properties can we conclude the original 3-SAT instance,
have? Well, since each node repr
truth assignments are compatible,

This mean

we can conclude that,

Having th
from which this instance was reduced, must
sents a partial assignment of variables in a clause and an edge means their
given their corresponding truth assignment, at

iables that results in the
AT instance is a yes instance, we know
at least 1 literal that evaluates to True
will be amongst the truth assignments in our nodes. Since,

by definition of the
e exist m nodes in
ze m in the

W

can only

nstance, but we cannot assume anything yet about

that there exists a
information,

least m clauses are all compatible with one another (we know they must all be distinet nodes since 2 nodes
of the same clause cannot share an edge as they have conflicting partial truth assignments). Since m is the
number of clauses in our original problem, we can conclude that there exists a truth assignments such that

all m clauses are satisfied

C ing the is p

Finally, we need to argue that we
Clique in polynomial time.

ince our transformation creates a node for every possible truth
our resulting graph will have at most 2% nodes for every clause. He
O(m) time. Since we c
time for ov
This means the overall time for step 1 is O(m?), which is polynomial in the si
Hence, we can conclude that we have designed a pnlummi(IHimc reduction from 3
Given a gu\ph G = (VE), a degunlml mlm of vertices md a number k. the(STRMEEITED
is to decide whether there is 7 of size at most k sue h Ah\\ G|X US| is connected.
o tho this problem i NPcomplot,

ce the construct
cate edges based on whether a truth assignment i

tificate is the set S of & nodes whose
. which is trivial to check in polynomial time.
AT to it. Recall that an instance of 3-SAT

les 7,

Solution:
addition to X connects th
To show that it is NP-harc
consists of a formula ¢ = Cy A+ A Cyy over @, such 1
s the disjunction of three literals. The question is whether there is stk s
satisfies all clauses.

We define a graph G = (V, E) and a target k based on

The problem is clearly in NP. The o

we redu

signment;that

i € X; for cach variable z; we create a vertex
d & X. Additionally, for cach variable z; we
LV\X.

¥ ol
and vf that be

2. For cach variable ;, we create the edges (¢, v;) and (o], v;). For each clause C;
if € contains the literal «; then we create the edge (u;, v,), while if C; contains the
literal Z; then we create the edge (u;,vf). Finally, we connect d with every vf and
oF
i

Finally, we set the target k to be n,

Notice that in order to connect v; with the rest of X we must select either v or vf

the set S since k = n, exactly one of them must be chosen for each j = 1,...,n. There is a
o-one correspondence between truth assignments for the variables and a choice between
d vf for each j = b will define our set, . Tt is not difficult to show Hm

into

DO D e

« only if for the corresponding S, the graph G[.

Solution: (Sketch.) Let G = (V. E) be an instance of
G’ = (V',E') where V'
E plus all the edges betwe
instance G’ can be created
a constant number of new
vp and V.

'OLOR. Create a 4-color insi

consists of V'

plus 4 new vertices vy, vz, v3, vg, and E' consists of
The
time O(n + m) since we only need to copy over G, and create

rtices and edges between them plus the n ne

1 the new vertices and all the ul[,,vs between v; and V.

edges between

Suppose that G is 3-colorable. Consider a 3-coloring of G, call the colors R, G, B (uull\(d:)
denote the color u by vertex v. To get a 4-coloring ¢’ of G’, for each v € V, we use the

same color as ¢. Then, we

call it Y.

olor v, v, vs using the colors R,
all the edges ¢ in G have endpoints that
a 3-coloring of G, the edges between v, and V
fine because v is colored Aty (e ooy G e oy
V1,03, v3, vy are fine by construction

Suppose that G is 4-colorable.
t

B and for vy we use a fourth

color. This is a \.\Inl I-coloring of G"

are also
the edges between

hen it must color V using at most 3 colors since otherw
ame color as one of the vertices in V. Thus, G is 3-colorable.
eduction.) Create G’ by simply adding a single vertex v, that connects to all

Same proof as above.

nH

can translate any arbitrary instances of 3-SAT to an instance of

gnment for every node, we know that
n of the nodes takes
compatible, we can do t
pair of nodes. Hence, the construction of edges will take at most O(m?) time.
of our input to 3-SAT.
SAT to Clique

in

<__S‘t¢:m

Tree

o't X
is connected. (Notice that if we hadn’t added the dummy node d the reduction would not ‘4 ‘obr'”o
%

NP-{mf

Edge Dicgordt Pty + pecc co ot
chowe. edqa fird W adoe disjoint S pols
L>g%ma\{ to 4re o fow ual

Baseball Elimination: Correctness

Theorem. Team 3 is not eliminated iff max flow equals the total
number of games left.

- & (Need to translate flow into outcomes of remaining games)

— Suppose there exists an integral max flow with value = total # of games left

- Flow on middle edge from game node (x-y) to team node (x) equals # of
matches between teams x and y that team i wins.

- Capacity on (x, 1) edges ensure no other team wins too many games.

games left

The Universy of Sydney Page 81

‘team nodes

Segmevtad Loact SQ)AMW.

OPT(j) =

game nodes

if j=0

inj<i<je(i,j) +c+OPT(i—1) if j >0

- Hamttonian Cycle @ Swple ayde
C ks node..

ledifeade < £= permidot fon & N ndes
Corkdior * Check perv Contclrs Cach vode in |/
oty onee & there s on betucen

edge
eo\d/\ ir & adjcat nades in e
oetion.
Prpfey C'alam'wj

—é,mfa Colovi

is Cdofing & Vortices such thod ey
@dq& has 2- diblerent colors ot its
poivits. ¥ AT REDUWES 70 3dp

Constraint satisfaction problems: SAT, 3-SAT.
Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.

Partitioning problems: 3D-MATCHING, 3-COLOR.
NP‘ Covn\?lebm&s .

Numerical problems: SUBSET-SUM, KNAPSACK.
CRUNAR-SAT

Iy \L P—

U~

PRHMOYUE Grogh F-tsbor aubset s
L ! ¢
WAm LS Ploser 3-color Scheduling

; (A

Tse

zon b dwesd .
(m!lgm!ql-‘d
13
Verter (over

v
%ot (awr

