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Classify Problem. (Reduction ( ·Edge Disjoint Path : paths do not
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- Satisfiability : literal : x or - Hamiltonian Cycle : Simple cycle
clause : A disjunction of literals. (j : X, VX-VTs C visits every made
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Conjunctive Normal form (CNF) :
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formula D that is the conjunction of clause certifier : check perm contains each mode in V
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